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The numerical simulation of combustion remains a challenging task. Flames are
often thin and occupy a relatively small volume within the domain of interest. Nev-
ertheless all of the combustion chemistry and much of the associated molecular
transport takes place within the flame itself, giving rise to a structure that must be
resolved if the simulated flame response is to be captured accurately. The present
work examines the use of a wavelet-based method in this context. A spatial dis-
cretisation scheme using biorthogonal wavelets is presented and is applied to a test
problem involving flame propagation in a representative fuel-air mixture, in which
the chemistry is treated using a standard four-step reduced reaction mechanism. A
novel and elegant boundary treatment is adopted in the wavelet scheme to enable the
implementation of physically realistic boundary conditions. Results show that the
wavelet scheme is stable and accurate and, moreover, is able to exploit the natural
data-compression properties of wavelets to represent the solution using a fraction of
the storage required for more conventional methods.1998 Academic Press

Key Wordsturbulent combustion.

1. INTRODUCTION

Direct numerical simulation (DNS) of turbulent flows is an activity severely limited |
presently available computer power. It has long been known (e.g. Corrsin [1]) that, in
to resolve accurately the governing Navier—Stokes equations, the number of computa
cells scales as a super-linear power of the Reynolds number. Reacting systems add adc
complexity to this already bleak picture. In many flows of industrial interest, the length
time scales associated with the reaction mechanism are much smaller than those
fluid turbulence, and the resolution requirements for chemically active flow simulations
thereby considerably increased. When this is added to the computational expense in
by the stiffness of highly nonlinear reaction rate source terms, it appears that reacting
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338 PROSSER AND CANT

simulations of significant complexity will remain firmly out of reach for the foreseeabl
future. Nonetheless, the same spatial and temporal stiffness that gives rise to such dema
computations may paradoxically provide a foothold for efficient numerical methods. Ma
industrial processes involving combustion occupyléminar flamelet regimg, 3], where
the turbulent flame can be regarded as a highly localised sheet of chemical activity, ei
side of which the fluid composition remains relatively constant.

The ability of wavelet-based methods to analyse functions in terms ofltuair rates
of change appears eminently suited to the numerical investigation of nonlinear partial
ferential equations, the solutions to which often contain a large number of disparate ler
scales. In particular, the efficient discretisation of fluid flow problems has been the
cus of a number of recent investigations, both with chemical reaction [4—6] and withc
[7-9]. Many of the discretisations proposed to date have been limited to periodic doma
although recent efforts have led to advances in nonperiodic discretisations [10-12].

In this paper, we propose a wavelet-based scheme intended for combustion probl
which adopts a collocation strategy. In traditional collocation methods, the solution to 1
set of governing equations is obtained on a grid of collocation points located in the phys
domain. In contrast, we compute the solution to the setafelet transformedquations on
grids of collocation points located in the transform domains. The solution is only return
to the physical space in order to evaluate nonlinear inertial and chemical reaction rate te
The advantage of this approach is that, while the solution is expressed in terms of the way
spaces, itis possible to exploit its sparsity in order to reduce the amount of storage reqt
to resolve the chemistry fields.

Section 2 reviews the physical aspects of the problem, Section 3 revisits some to
from multiresolution analysis and, in particular, biorthogonal wavelet systems. Sectio
discusses the strategy adopted and the incorporation of boundary conditions. Secti
examines results obtained using the proposed scheme while Section 6 presents fu
discussion and conclusions.

2. THE PROBLEM

To demonstrate the proposed wavelet discretisation, the reacting Navier—Stokes equa
will be investigated. In the most general three-dimensional setting, theM:-&re coupled
equations which between them describe the time-dependent evolution of density, ve
ity, energy, and\ reacting species. Realistic treatment of chemical reaction mechanis
usually requires many hundreds of elemental steps involving a similarly large number of
action intermediaries [13]. When we add to this complexity the three-dimensional nature
turbulence, it quickly becomes clear that a full treatment of general reacting flows prese
a challenge beyond the capabilities of presently available computer power. Simplificati
to the general case usually take the form of a restricted problem definition and/or a sim|
treatment of the reaction kinetics.

The most extreme simplification that can be made to the reaction mechanism is to rec
the chemical kinetics to an irreversible single step mechanism of the form

Reactants— Products

This mechanism is governed by an Arrhenius rate law, and at any pointin the flow the theri
chemical state of the fluid is given by a scatareferred to as eeaction progress variable
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[3, 14-16]. Asymptotic analyses of such simplified systems [17—19] reveal that there
dominantly exist two scales in the flow: one associated with the convective—diffusive |
of the flame, and one related to the reactive—diffusive part.

In a realistic reacting flow, the spatial stiffness of the chemical mechanism introduc
considerable range of length scales existing simultaneously in the flame structure. Id
then, we wish to examine our wavelet-based scheme’s capacity to deal with multiple le
scales appearing in localised regions of the computational domain. With this goal in m
the mechanism we have adopted is that of a premixed methane—air flame with the cher
described by a four-step reduced reaction mechanism. While the discretisation disct
here is one-dimensional, the techniques we have developed remain quite general ar
be applied in a straightforward manner to multidimensional problems via the use of tel
products of the one-dimensional basis functions. A forthcoming paper will detail the ap
cation of the method to fully three-dimensional DNS investigations of reduced chemi:
methane—air systems.

2.1. Governing Equations

Starting from the nonreacting Navier—Stokes equations as detailed in [20] and suy
menting these with the equations for species transport [17], the reacting Navier—St
system can be expressed as

9 9
ﬁ(p) + —(puk) =0

0 P 0

a(ﬂui) + (PU Uy) = _a_x. +— 3% (Tik)

d 0 a0k (1)
_(PE)+_(/0UKE) ——(PUk)+ (U|Tk|)—8—xk

d d Yy
(:0 Ya) + (pukY ) = we + {pDa }
In the above system of equatiolisis the stagnationinternal energy and is defined
as [20]

u?
E=h-RT+ —,
+2

whereh, the enthalpy, is given by [17]

.
hzza:havazzazva{m%/% Cpa(T/)dT’}. )

A? is the enthalpy of formation of speciesat reference temperatuifg. The temperature
dependence @iy, for each species was taken from the CHEMKIN thermodynamic datab:
[21]. The heat flux vectog is defined as [17]

aT N
= —A— he Yo Vak, 3
Ok X +p ; K 3
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wherein the assumption has been made that the contributions arising from radiation, the
diffusion, and concentration gradients are negligible. The system is closed by the inclus
of the thermal equation of state,

P = pRT,

whereR refers to the characteristic gas constant for the mixture.

If the diffusion velocitiesV, are modelled in terms of Fick’s diffusion hypothesis [22],
then substitution of this approximation into the one-dimensional form of equation set
and subsequent nondimensionalisation leads to

9 9
50+ 5 (pu) =0

S o+ L uy =P A 20
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5 9 , 1 9 (. oT
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1 L) Y,
he D,
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3Re X
0 0 1 9 Y,
—(pYy —(puY,) = wy + ———1L pDyg— ¢.
at(p )+ 8X(p ) = we + {p }

(4)

Re Scox “F5x

In this last set of equations, the following dimensionless groups have been employed

|
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The transport equations are closed through the dimensionless forms of the caloric
thermal equations of state:

_ 2
E=h—RT+ wuz
5)
(V 1)/\/12 Z Ra¥ea.

2.2. Reaction Mechanism

The reaction mechanism adopted is that discussed in the asymptotic analysis of P
and Williams [23] and consists of the following steps:

I. CHs + 2H + H,0 — CO+ 4H,
Il. CO+HO0= CO, +H;
Ir. 2H+M — H, + M
V. O, + 3H; = 2H,0 + 2H.

(6)
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The associated reaction rates for each of the species involved are

wen, = Wen, (—w))
weco = Weo(w; — wy)
weo, = Weo, (i)
wh = 2Wy (—w; — wy + W) %
wh, = Wi, (4w + wy 4wy — Swyy)
WH,0 = WHzo(—lE| - IEII + ZUTIV)
wo, = Wo,(—wv)
WN, = O,

whereW, are the molar masses of each species, andthiar reaction ratesv, , wy, wy,
andw,y are given by

w; = Kya[CHg][H]

— kg [H] [CO2][H2]

= g 100l - T

_ (8)
wy = ks[O2][H][M]

— [H]?[H20]?

wyy = k[H] {[Oz] - [HZ]‘Q’KIV}

Each of the rate constants can be calculated using the general Arrhenius form

—E
Kn = BnTa, exp{ ROT“ } 9)

and the equilibrium constant§s, K, andK,y can be calculated from

o HIAOL_ ¢ f )

~ [H2][OH] T
[COz][H?] T
= ool =% ?{ 7 w0
[H]*[H20]? Tiv
= fpor ~ e T )

whereCg, C;;, andC,y are dimensionless constants. The numbering of the reaction st

and the values of the various rate parameters are the same as those given in [23].
Molecular transport properties are calculated using two assumptions. First, we fol

Echekki and Chen [24] in relating the thermal conductivity to the specific heat of

mixture via the relation
A T)%7
L A{—} , (11)
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whereA is a constant=2.58 x 10~°kg/ms), andT, is a reference temperatufe 300 K).
Second, we assume that the Prandtl and Lewis numbers, defined as

MUCp A

Pr= , Le, = ,
A pDyCp

remain constant. Assuming a fixed Prandtl number then gives a relationship for the t
perature dependence of the viscosity. Fixed Lewis numbers similarly provide tempera
dependencies for the mass diffusivities of each of the species. All of the parameters
during this study are detailed in Section 5.

3. CLASSICAL BIORTHOGONAL WAVELET BASES

Biorthogonal wavelet systems are derived from a paired hierarchy of approximati
subspaces,

Vj1CV3CVyayr...
- V. 12)
Vi1 CVy CVJ+1....

The basis functions for these spaces areptimal scaling functiong (x) and thedual
scaling functiong(x). Biorthogonality is enforced by first defining tvionovationspaces
W ; andW ; such that

Vipp=Vi0W,;

- . 13)
Vijaa=VyeW,,
with the further requirement [25]
Vy LWy, VyLW,. (14)
The innovation spaces so defined verify
o0 oo .
P wi=L®=PW (15)

i=—o00 i=—o00

The basis functions for the innovation spaces are the primal and dual way€letaind
¥ (X), respectively. In the classical biorthogonal setting, the primal and dual basis functit
each satisfy a two-scale relation

$() =V2) hmp@x—m), Y(x) =2} gnp(@2x —m)

meZ meZ

P = V2 hnd@x—m), ) =v2)  Gub(2x —m).

meZ meZ

(16)

Each of the two scale relations appearing in Eq. (16) makes use of an appropria
definedquadrature mirror filter—defined in terms of the sets of coefficiehts gm, hy, and
d,—which together uniquely define all of the properties associated with the basis functic
If the biorthogonal system has compact support, then this feature is reflected in the lim
number of nonzero coefficients defining the quadrature mirror filters.
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The projection of a functiorf (x) onto a finite-dimensional scaling function spatg
or a similarly finite-dimensional wavelet spaég;, is accomplished in a way similar to the
algorithm described for orthogonal systems,

Ry, {00} =D (F W), ¢3,W)) dax(X)

keZ

P, (£ 00} =D (FW). ¥4 (W) Yo k().

keZ

a7

in which (-, -) represents an inner product. Equations (17) are used in conjunction v
Egs. (16) and (13) to provide a framework of a fast wavelet transform:

(f.d1k) = Sy = ZF‘mS;+1,m+2k
m

(f, &J,k) = de,k = ngs;{-s-l,mﬂk (18)
m

SJf+1,k = Z {hi—2 SJf,s + gk—zsdaf,s}-
&

The principal difference in using biorthogonal systems lies in the fact that the analysis fil
used for decomposing a signal are different from the synthesis filters used to recons
it [25].

3.1. Nonperiodic Discretisations: Motivation

During combustion simulations, periodic boundary conditions introduce considerz
restrictions when realistic heat release rates are encountered. In such cases it is im
ble to obtain quasi-steady solutions as all state and hydrodynamic quantities vary strc
with time. To obtain quasi-steady solutions of greater practical value, a nonperiodic
cretisation must be sought which allows the low density, high temperature burnt prod
to be convected out of the domain. There currently exists a number of constructions
to discretise problems defined on nonperiodic domains. Cohen, Daubechies, and Via
provide a basis consisting of three sets of wavelets; one set for each edge of the dc
and one set of “internal” wavelets. Their construction is completed by employing matri
at each end of the transform vector to ensure that polynomial sequences across all
are mapped to zero under the action of the wavelet filters. Monasse and Perrier [27]
provide a construction using compactly supported orthogonal wavelets. In their const
tion, however, they do not use a staggered support for the construction of the edge wav
Edge effects are incorporated through the use of an approximate projection quadrature
distribution of errors associated with the quadrature is nonuniform and the scheme ap
unsuitable for combustion problems [28].

Caietal develop an interval-based construction based on spline wavelets [29, 30], w
they subsequently employ in an adaptive manner to resolve a two-dimensional reac
diffusion equation. A spatially adaptive algorithm also provides the motivation for t
scheme discussed by Vasiliet al. [10-12]. In this approach, the construction of edg
wavelets is avoided by extending the solution to the governing equations beyond the in
diate domain of interest. The boundary conditions and evaluations of nonlinear term:s
then applied in the physical domain, wherein the solution is also time advanced.
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With the exception of [10-12], most of the schemes discussed do not readily deal v
the kind of sophisticated boundary conditions with which we have to contend. In order
accommodate these general boundary conditions, we propose a scheme which make
of second generation wavelets

The term “second generation"—coined by Sweldehal. [31-33]—is used to refer to
the fact that the manner in which such wavelets are designed is more general than clas
(“first generation”) techniques. The resultant basis functions are biorthogonal, and car
derived for a multiplicity of discretisations, including those with uneven grid spacing a
domains defined on manifolds. From this class of basis functions, we have adopted
interpolatingwavelet family discussed by Donoho [34]. The basis functions take the forr

P k(X) =2 x — k)
Yik(X) = (2% — 2k — 1) (19)
¢;j,k(x) = 5(X — Xj k),

whereé(-) is the Dirac delta function. An explicit relation describing the dual wavelet i
unknown. The absence ok& multiple in the previous definitions reflects the fact that we
have adopted aft- || norm, in preference to the more usijal|; norm. The choice of
normalisation is based on the recommendations of Donoho [34] and reduces the comple
of the resulting calculations.

The basis is said to baterpolatingin the sense that(x) = ¢ (2x — 1) satisfies

1, k=0,
d(K) = (20)
0, k#0,keZ.

3.2. Fast Transform Algorithm

The projection of a functiorf (x) onto a finite-dimensional scaling function spatgis
defined here as

Ry, {F 00} =D (F(U), ¢34(W)Pak(X)

keZ

k
= Z f {2—J}¢J,k(x)

keZ

=3 5] bk, (21)

keZ

WhereSJf,k = f{k/2’} has been introduced in order to maintain consistency with existir
literature. A possible drawback arises with this set of basis functions in that the wave
coefficients cannot be calculated using classical (i.e. filter-based) techniques, as the"
for the dual wavelet is unknown. Instead, the coefficients must be derived directly fr
Eq. (13):

R {fO0} = Ry {00} = Ry {T 00}

S dl w0 =Y S im0 = Y S g0

leZ meZ nez

(22)
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Using the notation of Egs. (19) and (20), it is straightforward to show that an arbitr
wavelet coefficiendjf,m can be calculated from

f f f 1
dqu = Sj+1,2m+1 - Z Sj,n¢{m —n+ E}

nez

f f
= Sj+12m+1 T Z ansj,n’ (23)

nez

wherel'nnis asquare matrix of sizé 2 2} for periodic discretisations @2/ + 1) x (2 + 1)
for nonperiodic domains (the reason for the difference in the matrix’ size will be discus
shortly):

1
an—¢{m— n-+ 2}
Due to the compact support of the primal scaling function, this matrix has a band-diag
structure.
In the discussion presented by Donoho [34], the primal scaling function is taken tc
one of the family offundamental solutionderived by Deslauriers and Dubuc [35]. Eact
primal scaling function then satisfies a two-scale relation:

p(X) = qu{%}m—s). (24)

EeZ

The functionsp (x) have compact support and it follows that the summation appearing
Eq. (24) is finite in extent. We note in passing that rigorous estimates for the continuit
the fundamental solution exist and can be related to its polynomial$fjag]. The values
of ¢ (&£/2) can also be calculated from an explicit relation [33]:

1 N 'N:_l (i — M)
qb{k—l——}:(—l) /2+k i=0 2 ’
2 (k+2)(F+K)!H(5 -k-1)
The transform algorithm is completed by recalling that the definition of the dual scal
function leads to the following causal relation for the scaling function coefficients in 1
approximation spac¥:

k=-N,...,N—1 (25)

S/ = (f (W), 8(u—ujp)

= (f(W, 85U~ Uj4120) = S/ 11 o0 (26)

Regardless of the choice of primal scaling function tthasform vectohich arises from
the wavelet transform will have a structure similar to that shown below:

{SloS11Sl, .. -
J

{d\]ffl,O defl,l et de—l,ZJ’l—l |S~Ifl,0 ijl,l R S\;—l,ZJ’l(—l)}T
\2

{d3_20 - 85 1o 4ldi a0 - d) oo 4|S) 00 S ppein)}

Wi_1 W3 ,0dW; 3D dVi_p.
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Irrespective of the number of wavelet space decompositions, coefficients from the co:
scaling function spacéV ;_p) are always kept. This point will be exploited later when
discussing the incorporation of boundary conditions.

An estimate for the number of operations involved during the transform algorithm can
obtained by noting that it requiregI2 — 1) filter coefficients to define the primal scaling
function ¢ (x) which spandy (the space of polynomials of degreeN). The part of the
transform algorithm which calculates the wavelet coefficidﬁh; for a given resolution
j can be accomplished in(R — 1) + 1 floating point operations. The subsampling pro-
cess required for the scaling function coefficieSf§< requires a further R operations.
Overall, 2*IN operations are required per resolutipr(this presupposes that the di-
mension ofW; is 2/). For a givenP passes of the transform algorithm, then, there ar
2N S, 2 =2)-PN{2P+1 _ 1} operationsV ; represents the highest resolution in the
discretisation. We note that in deriving this estimate, we have not assumed that the dec
position can continue until reachidg. The reason for this stems from a minimal resolutior
requirement, which prevents the support of the boundary wavelets from overlapping. -
minimal resolution argument is given for periodic Daubechies wavelets in [36] and can
readily adapted to the basis used here.

3.3. Interval Construction

We require at the outset that

dim(Vj) = dim(Wj) +1
- - 27)
dim(Vj) = dim(Wj) + 1.

This stipulation leads to the bounding of the discretised interval by scaling functions whi
in turn, allows simple incorporation of boundary conditions.

We letV; denote a scaling function space, discretising [0, 1] inte-2 elements.
Each element is associated with a scaling funcfipg, located such thag; i (Xj m) = 8k, m.
wherex; m=m27),0<m, k <2!. We define similarly the wavelet spae¢; to discretise
[0, 1] into 2 elementsy; k, each of which satisfieg; k(Xj.m) = dkm, Xj.m= Xj+1.2m+1,
0<m<2i —1, 0<k<2l. To maintain biorthonormality of the basis, it is necessary t
modify ¢; k(x) as and when the support of the function intersects a boundary. If we |
¢hk(x), djk(X), and¢fk(x) denote the leftmost, central, and rightmost basis functions i
a discretisation, respectively, it can be shown that [34]

=z
[

Pr) = Bjk() + D ehydi—mn(X), 0<k<N-1

3
— O

(28)

pzd

PTO) = $j k0 + D &R kb2, 2 —N+1<k<2;
=0

3

et andeR are matrices arising from the construction of the edge basis functions, and con
a finite numberN x N) of nonzero entries. The limits daappearing in Eq. (28) arise

as a result of the compact supportgafx). It is straightforward to demonstrate that in the
regions where the scaling functions are modified to incorporate the edge of the dom
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the relations

Vi) = i1 2100,
(29)

YO0 = 6f 1 210

are applicable [28].
The interval construction of the wavelet basis modifies slightly the transform algoritt
in that the wavelet coefficient‘ﬁf,m are now calculated from

2i
f f f
dj,m = Sj+1,2m+1 - Z 1-‘rtT’mSj,n (30)
n=0
with T2, . defined as
b I 1
Fon=1¢ m_n+§ ) (31)

andgl (x) = ¢ (x), ¢ (x), or pR(x), depending on the indices andn.

3.4. Differentiation

Differentiation of the wavelet expansion of a function leads to the transformed repre:
tation being “lifted” from the space onto which it was originally projected. In the conte
of orthogonal wavelet bases, Liandrat and Tchamitchian [37] have shown how a lir
operatorT may be approximated on a single scaling function spacby T;, where

T =R,TR,. (32)

Furthermore, they show that the causal property of the multiresolution analysis leac
a decomposition oT; onto a hierarchy of wavelet spaces referred to asthedard de-
composition The standard decomposition has been adopted here for the calculation o
wavelet expansions of the derivatives appearing in the transport equations. The deriv
of these decompositions in the context of the wavelet basis adopted here is novel a
further discussed in Appendix A.

4. SOLUTION STRATEGY

To demonstrate the strategy adopted by our proposed method, consider ageneric tra
equation for some scalar prope#tydefined over some intervel =[x, X

9 __9 9 fhed8
S log) = ax{pu§}+§+ax{D ax}, X ¢ 3%,

0
o8 = —x" (), X=X, (33)

—{p&} = — xR, X =X.
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S represents a source term forand D? is a characteristic diffusivityy - (t) and x R(t)
are time-dependent boundary conditions for the left- and right-hand ends of the cc
putational domain, respectively. For ease of exposition and for compatibility with tl
characteristic-based boundary treatment of Thompson [38], we omit the diffusive ter
from the previous equations. Diffusive boundary conditions can be implemented in 1
same way as the characteristic boundary conditions we will now discuss. By allowi
the incorporation of both inviscid, time-dependent, and viscous boundary conditions,
numerical scheme is fully compatible with the Navier—Stokes characteristic boundary c
dition (NSCBC) treatment of Poinsot and Lele [20] and of Baetnal. [39] for reactive
systems.

We begin by stating that the numerical scheme is not applied to the governing equa
as detailed above, but to its wavelet-transformed counterpart,

0
S {PiTp(e8)} = —05"{put} + PITH{S), x ¢ 0%, (34)

whereP3 =L = (R, . + 3777 » Pw,) anda$” is the standard decomposition afd x—
defined here a(§3JJ:é (d/d x)Pj:é). The diffusion term has been omitted, in line with earlier
comments. We observe that in using a multiresolution strategy to discretise the probl
we represent the domaiR + 1 times, whereP is the number of different resolutions
in the discretisation® wavelet spaces and the coarse resolution scaling function spe
V;_p, P >1). While in the transform domain, each representation of the solution (defin
at some characteristic resolution resolution quantifiecppghould be supplemented by
boundary conditions of some form.

Examining, first, the boundary conditions applied to the coarse scaling function sp:
V;_p, we first assume that the right-hand side of Eq. (34) has been calcwitexlit
boundary conditions and that the result of this calculation is expressed across the hiera
of wavelet spaces and;_p. We recall from Egs. (21) and (26) that the set of scaling
function coefficients for the right-hand side of Eq. (34)\/Ir3_p—{8§ip} (say)—verify
(S ) C (S} p.q). FurthermoreS;® o = Si andSﬁ’fP’ZJ,p = %,;, which are the phys-
ical space values of the right-hand side of Eq. (34) evaluated at the boundaries of
domain. Hence, the incorporation of boundary conditions ¥hjap involves simply re-
placingS;% p o by —x* (1) andS{* -+ by —xR(0).

The wavelet space treatment is slightly more complicated. By examining Eg. (29), if
straightforward to demonstrate that s{gp (x)} N dQ = {#} = supd ¥ R(x)} N 9. Hence,
there are no wavelets on the boundary, and no boundary conditions need be applied to
directly. However, the original wavelet coefficients for each oftheobtained from Eq. (34)
were derived without the influence gt (t) andy R(t). As S5 B.0 andSﬁiP,ZJ,P have been
replaced by—x " (t) and—x R(t) at the boundaries, we must recalculate the values of tr
wavelet coefficients that are influenced by this modification.

Now, by definition, the wavelet coefficients for the right-hand side of Eq. (34) can |
written

2I
&' =Fiiom1— D TSy i=J—P,.... -1 (35)

n=0
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but, the first and last eIemer$§ and S’Jg are now equal te- x - (t) and—x R(t), respec-
tively. Hence, Eq. (35) must be modified to

2-1

b .
{d5} = Siromes — Tiox =) — Tz xR0 — Z TmySy, 1=J-P,...,)-1
n=1

(36)

Here,{-}? is used to denote a boundary influenced quantity. By ensuring that the boun
basis functions from the left- and right-hand ends of the domain do not overlap, the apj
ances ofy - (t) and x R(t) are mutually exclusive. By subtracting Eq. (35) from Eq. (36
we obtain

(51 =dfE + Tio{ S — x ) + T2 {Fs — xR0}, i=3-P,.... -1
(37)
The compact support @fl (x), and the structure af" (x) andgR(x) means that the bound-

ary modification of Eq. (37) need only be applied to the first andNaspefficients of each
of the expansions iW;,i=J—-P,...,J - 1.

5. RESULTS

A code has been written which embodies the techniques discussed in earlier section:s
algorithm uses ail = 4 interpolating wavelet (shown in Fig. 1). Derivative approximation
based on this wavelet have fourth-order accuracy [40]. The code requires as its input

_o2 L L s L L
-3 -2 -1 0 1 2 3

FIG. 1. N =4 interpolating wavelet.
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of initial estimated species mass fraction profiles, as well as estimated profiles for den:
velocity, and temperature. The pressure and stagnation internal energy are determined
these initial data and subsequently all of the principal dependent variables are projected
the hierarchy of wavelet spaces. The solution is time advanced in the transform dom:
until the end of the simulation is reached, returning to physical space only for the evalua
of reaction rate or inertial nonlinear terms. The time-dependent boundary conditions
imposed on the coarsely resolved scaling function space directly at each time step,
subsequently convolved onto each member of the wavelet spaces as discussed in the pre
section. The time stepping algorithm adopted is that of Wray [41] and is a minimal storz
Runge—Kutta method of third order. Transients arising from the approximate nature of
initial conditions are allowed to propagate out of the domain, and once a pseudo-statiol
solution is obtained, the simulation is stopped.

To assess the comparative execution time of our proposed numerical method, the test |
lem was investigated a second time, employing a traditional numerical method. We cho
second-order centred differencing scheme, as this is a popular option for simple proble
and itis also one of the fastest available numerical algorithms. In direct comparison, the |
wavelet scheme required 80% more time to execute than the explicit differencing sche
This makes the scheme competitive with higher order traditional methods such as com
finite differencing schemes [20]. The principal penalties in the execution time of the pi
posed wavelet scheme arise from the evaluation of nonlinear terms (further discusse
[42]) and the compression and expansion of the transformed species mass fraction pro

Figure 2 demonstrates the implementation of the NSCBC boundary conditions and sh
a pressure wave propagating toward a computational boundary. The fluid through wit
the wave is propagating is a quiescent mixture of stoichiometric methane and air, and
theoretical sound speed for such a mixture is 343.2 m/s. As seen in the figure, thel
no appreciable reflection at the boundary and the simulated sound speed, at 343.1
is in excellent agreement with the theoretical one. The resolution for this calculation
256 grid points (corresponding ¥g), with a most coarsely resolved space of 32 node
(V3_p =Vs). For the acoustic perturbation shown, the profile is considerably overresolv
when using a grid of 256 points. We adopted this resolution for two reasons. First, this v
the resolution at which the structure of a flame based on the reduced methane mechanisr
subsequently examined. Second (and more importantly), the resolution adopted conte
a number of wavelet spaces and provided a significant test problem for the incorporatio
the time-dependent boundary conditions discussed earlier.

For the four-step reduced methane mechanism, the nondimensionalisation of the go\
ing equations has made use of the reference quantities

(Cp)o = 106707 Jkg K™, To=300K pp=1.1219%kgm3 (38)
R®=30103Jkg*K? Woy=1kgkmol' u’=05ms? (39)

which lead to the dimensionless groups
Re=30, Pr=07 M?=0.19873x 107

The dimensionless parameters relating to the chemistry of the problem are giver
Tables I, II, and III.
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FIG. 2. Acoustic wave propagation across an NSCBC boundary condition.

Figures 3a—c show the species mass fraction profiles obtained from a quasi-steady
ulation of the four-step-reduced mechanism stoichiometric methane—air flame. The q
steady nature of the solution was obtained by balancing the flame speed against the
of the incoming reactants. The flame speed in one dimension can be obtained fron
reaction rate profile of any of the species and is derived by integrating its species mass
tion transport equation over the domain. The range of the integration should be sufficie
large to ensure that the reaction rates are exponentially small at the limits. The rate of

TABLE |
Quantities Used in the Derivation of the Dimensionless Reaction Rates
k (B )aim (=5 )dim B (—=5) o n
1 2.0 x 10" —4401.2 45177 % 10° —14.77 0.0 2
5 23 x 101 372.84 61540x 10° 1.25 -0.8 3
10 44 x 10° 0.0 51132x 10° 0.0 15 2
11 22 x 10 —8455.1 13152x 10 —28.37 3.0 2

Note. The units in columns (2) and (3) atkmol/m®)~"Ys-1°K-* and°K. All other quantities are
dimensionless.
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TABLE Il
Molecular Transport Coefficients and Characteristic
Gas Constants for Various Species

Species Lewis number, Le R,
CH, 0.97 0.487
CcO 1.11 0.278
CO, 1.39 0.177

H 0.18 0.390
H, 0.3 0.433
H,O 0.83 0.243
0, 1.11 0.278

consumption of reactants is then

[ we dx

. 40
(Ya)o - (Ya)i ( )

Prur =
where the suffices and o refer to inlet and outlet conditions, respectively. It should be
noted that this equation is valid only for pseudo-stationary solutions, and if this is not 1
case, a modification to incorporate time-dependent effects must be made. The flame s
has been evaluated using this method and has been found to be somewhat higher the
accepted value for this mixture under similar conditions of temperature and pressure. -
tendency has also been observed in previous studies of premixed laminar flames L
the same reduced reaction mechanism and is certaotlgssociated with the particular
numerical method presented here.

Downstream of the flame, the temperature of the products is 6.8 dimensionless ul
corresponding to 2040 K. This figure is in excellent agreement with [43] who have us
more complex relations for the reaction rate terms.

Figures 4a—c show the reaction rate profiles for all species eX¢efrecall wy, = 0).
We see that the regions of significant reaction occupy 0.1-0.2 dimensionless length u
corresponding to 0.25 mm-0.5 mm in the physical domain. The flame thickness is
reasonable agreement with Echekki and Chen [24], but too close a comparison shoulc
be made as the latter work used reactants with a preheat temperature of 800 K.

The reaction rate profiles shown in Fig. 4 indicate that the entire reacting portion of 1
flame has been captured within the computational domain, and this view is strengthene

TABLE IlI
Equilibrium Constants for Reduced Methane
Reaction Mechanism

K C (T dim T

3 0.216 7658 25.53
I 0.035 3652 12.17
v 1.48 6133 20.44

Note.Column (3) has the units 6K. All other quan-
tities are dimensionless.
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FIG. 3. Species mass fractions for stoichiometric premixed methane—air flame.

Fig. 5, which shows the enthalpy of the flow as a function of distance. We note that ove
the flame is isenthalpic, as predicted by classical thermodynamic analyses.

Figure 6 shows the spatial distributions of temperature, density, velocity, and pres:
We see that there exists a significant pressure gradient within the reaction zone, bt
global pressure drop across the flame remains small.

Thresholding. The principal advantage to solving the governing transport equations
the hierarchy of wavelet spaces lies in the sparsity of the transformed representation. \
combustion occurs in the laminar flamelet regime, the species mass fraction profiles ex
localised regions of large change within the flame structure, outside of which they
comparatively constant. The wavelet representation of such distributions can be explc
as only those regions of rapid change are associated with wavelet coefficients of nont
magnitude.

The present adaptive scheme differs from those proposed by Vasiladv[10—-12] or
Cai et al. [29, 30]. The adaptivity proposed in their work is most effective when the
exists a few well-defined regions in the solution, where multiple scales are apparent.
future goal is the investigation of turbulent combustion processes, where the space f
broad range of length scales apparent in the fully developed turbulence does not app
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FIG. 6. Velocity, density, temperature, and pressure distributions associated with stoichiometric methan
flame.

be well suited to treatment using adaptive techniques. We conclude that the discretis
of turbulent fluid flows using wavelets purely in their capacity for reducing informatic
storage may not be the best approach.

The scale separation of the chemical kinetics is still significant in turbulent flows, howe
and in particular, the species mass fraction of an elervgmn regions of the flow with
homogeneous chemical composition is undisturbed by turbulent fluctuations. By cont
variations inY,, close to the flame are large and highly localised. Hence, significant mem
reductions may still be afforded by thresholding the wavelet expansions offgatisome
small finite value. Introducing this technique for the species mass fractions but not the -
flow variables would be cumbersome were it not possible to express the solution, equat
and boundary conditions in terms of their respective wavelet expansions. Furthern
by applying the differential operators and time stepping techniques only to those reg
where significant wavelet coefficients exist, considerable computational savings ca
made.

Thresholding must be applied carefully, however. In reacting flows with complex che
istry, the equilibrium structure of the system may contain radical species whose con
trations are very small. It is important to avoid setting thresholding levels which resul
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FIG. 7. Intermediate assembly of matrices during the construction of the nonstandard decomposition (
subspace decomposition).

the removal of such trace species, as this can have a disproportionately large effect ol
nature of the flow.

Two remedies exist to deal with this problem. If thresholding is applied to the enti
transform vectoiincluding V ;_p, then the threshold level must be set below the equi
librium value of the species. This approach is undesirable in that we may not know"
equilibrium composition of the flow, and if the equilibrium concentration of the species
small, the associated small threshold level leads to poor performance in the memory-sa
algorithm.

The second approach is to apply the thresholding only to those components in the wa
spaces. By retaining the coarse grained structure of the solutidg.on we are guaranteed
to retain the crucial equilibrium structure of the flow. For this paper, we have adopted
first of these approaches. Not only is it straightforward to implement, but also represe
the worst-case performance of the memory compression algorithm. Tables 1V, V, and

TABLE IV
Variation of Solution Quality and Computer Memory Reduction
with Wavelet Threshold Parameter (g)

1Y) = (Yool lu = ull;
¢ Reduction AR ullz
0 — 0 0
108 2.0358:1 20625x 104 1.0903x 104
107 2.7788 : 1 24767x 1073 4.1158x 10*
10°® 3.6377:1 17915x 1072 6.4455x 1073
10°° 4.4618:1 66130x 1072 5.3950x 102

Note. The suffixe denotes a thresholded quantityu|, =1.1426x 107,
IYull2=4.7908x 1073,V ; =Vg, Vy_p =Vs.
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TABLE V
Variation of Solution Quality and Computer Memory Reduction
with Wavelet Threshold Parameter (g)

1Y) — (Yu)ell2 lu—ucll2
€ Reduction IYh Il [lull2
0 — 0 0
108 2.2334:1 98208x 104 1.2016x 10
1077 3.2000: 1 73761x 1072 1.7680x 1072
106 4.7080:1 38448x 102 9.7572x 1073
10°° 6.5852:1 12507 x 10t 1.2409x 1072

Note. The suffixe denotes a thresholded quantity|, = 1.1426x 107,
IYull=4.7908x 1073,V = Vg, V;_p = Vs.

show by how much the memory required to resolve the chemical species reduces
increasing wavelet threshold. In each case, a uniform threshold was applied to all o
chemical species, and no further “tuning” of these parameters took place. It is worthw
emphasising that when the threshold level is set to 1@ is possible to resolve all eight
species using less memory than that required to capture the gagteon progress variable
[3, 14-16] of the much simplified single step chemical mechanism using more traditic
numerical methods.

The sensitivity of the solution to an increasing absolute wavelet thresholding pararr
is demonstrated in columns 3 and 4 of Table IV. The normali$edor norms for velocity
and radical hydrogen mass fraction are presented because empirical evidence suggest
are the most sensitive variables. Errors arising fadirapecies mass fractions feed through t
the velocity field via the pressure terms in the momentum equation and the thermal equ
of state. Furthermore, the low Mach number of the flow renders the pressure particu
sensitive to perturbations (this is apparent from the Mach number divisor appearing ir
dimensionless thermal equation of state—Eg. (5)).

Similarly, numerical evidence and examination of the reduced four-step chemical reac
mechanism reveals the crucial role played by the hydrogen radical. Without its presence
reaction stops. As the species appears in very small quantities, it follows that small e
will produce a disproportionately large effect.

TABLE VI
Variation of Solution Quality and Computer Memory Reductions
with Wavelet Threshold Parameter (g)

1Y) = (V)2 lu = u.l,

¢ Reduction I¥allz ullz

0 — 0 0
108 2.3540:1 17554 % 1072 2.6214x 1073
107 3.4020:1 73815x 1072 3.2328x 1073
10°® 5.1980:1 53998x 102 1.1872x 1072
10°° 8.1270:1 14897x 10 2.0886x 10?2

Note. The suffix e denotes a thresholded quantityu|, =1.1426x 1%,
IYull2=4.7908x 1073,V ,; =Vg,Vy_p =V,
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Despite the sensitivity of these quantities, we see that in general the errors arising
result of thresholding are very small. It is clear from the results that the “selectiveness'’
the wavelet thresholding is both robust and effective.

6. CONCLUSIONS

A new numerical scheme has been proposed based on a collocation-like strategy
making use of interpolating biorthogonal wavelet systems. The flexibility of the basis fur
tions has been exploited to pave the way for an elegant treatment of general boun
conditions relevant to compressible fluid flow problems. The technique has been applie
a one-dimensional premixed laminar flame problem with a reduced four-step methane
reaction mechanism. The spatial localisation of the flame structure leads to consider
sparsity in the wavelet representation of the species mass fraction distributions. This s
sity has, in turn, led to significant reductions in the memory required to resolve the probl
accurately.

The reduction in memory required to resolve chemically active systems implies tl
simulations of much greater complexity can now be undertaken with little or no extra c
over those presently achievable. Future work will seek to improve the execution time of
algorithm by examining the evaluation of nonlinear terms while the solution remains in t
transform domains.

APPENDIX A: DERIVATIVES IN INTERPOLATING (SECOND GENERATION)
BIORTHOGONAL WAVELET SYSTEMS

For our scheme, we have adopted the standard decomposition [44] for the discretise
of the first and second derivatives. Defif’ such that

dn

I F(x)) = a2

{Py, (oM}, (41)
noting in passing that this expression only has meaning if the underlying basis functi
have sufficient differentiability. Repeated application of the causal relation (Eqg. (13)) les
to the standard decomposition

J-1 dn J-1
a§”>{f<x>}={mp+ > RN.}—{PVJP+ > RN,}(f(x». (42)

n
i=J-P dx i=J—P

Explicit calculation of the standard decomposition leads to the characteristic “starbul
structure in the operator, as depicted in [8].

To calculate explicitly the standard decomposition using the interpolating wavelets,
must first assemble the intermediate structure shown in Fig. 7. For this illustrative exam
we work with the first derivative and use only+3L approximation spaces. Each of the
matrices in the assembly are of dimension22’~', wherei can take any value between

1 andP. We denote b)éj;kj’i a typical member of this assembly and define it as

. 1. d
7= [ Brugp{vhad ox (@3
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wherey]_;  (x) is [28]

Y00 = @b e (00

Recalling the definition of the primal wavelet and dual scaling function, Eq. (43) can
simplified to

e =22l 27y — 2k — 1), (44)

whereg!’ denotes the derivative afl. The problem we now face is that of calculating
the values of the primal scaling function at rational dyadic grid points. Differentiati
equation (24), we find

d B £) d
Tl 200) —2Z¢{§}&{¢(2x—s>}. (45)

E€Z

Definingh: =¢(£/2), Eq. (43) is identical to the two-scale relation given by Beylkin [45
in his discussion of derivative expansions in orthogonal wavelet bases. The procec
described in that paper can be directly applied to calculate the required derivative value
our wavelet system. After the values @/dx)(¢ (x)) are calculated at all integer nodes
Eq. (45) can be applied recursively to calculate the valuéd afx)(¢ (x)) at any required
dyadic point.

After calculation of the assembly of submatri«;gs;f‘i , the full standard decomposition
is determined by applying the standard transform (i.e. Egs. (23) and (26)) to the colu
of the assembled matrix. The accuracy of the approximation foNtee4 case is formally
fourth order. A discussion on the construction, accuracy, and stability of the deriva
approximations obtained using interpolating wavelets with different valudsopresented
in [40].

APPENDIX B: NOMENCLATURE

X  spatial coordinatex; x = 271k t time
p  density u  xdirected velocity
P pressure E stagnation internal energy
T temperature Y species mass fraction
g heat flux vector ®  reaction rate
D binary diffusivity u  viscosity
A thermal conductivity M Mach number
y  adiabatic index Re Reynolds number
Sc  Schmidt number Pr  Prandtl number
Le Lewis number Z  the set of integers
R the set of reals R° universal gas constant
R characteristic gas constant W molar mass
N polynomial span of primal scaling function
Suffices

o reference quantities
a chemical species
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